Microwave dielectric heating of drops in microfluidic devices
نویسندگان
چکیده
منابع مشابه
Microwave dielectric heating of drops in microfluidic devices.
We present a technique to locally and rapidly heat water drops in microfluidic devices with microwave dielectric heating. Water absorbs microwave power more efficiently than polymers, glass, and oils due to its permanent molecular dipole moment that has large dielectric loss at GHz frequencies. The relevant heat capacity of the system is a single thermally isolated picolitre-scale drop of water...
متن کاملEfficient Microwave Heating and Dielectric Characterization of Microfluidic Systems
ABSTRACT This paper presents a 2.45 GHz microwave cavity resonator with the novel dual function of both sensitive dielectric characterisation and directed, volumetric heating of fluids in a microfluidic chip. This method is shown to have a higher efficiency (>90 % for methanol), higher rate of heating and more accurate control than previous microfluidic microwave heating methods [1], [2]. The s...
متن کاملMicrowave dielectric heating of non-aqueous droplets in a microfluidic device for nanoparticle synthesis.
We describe a microfluidic device with an integrated microwave heater specifically designed to dielectrically heat non-aqueous droplets using time-varying electrical fields with the frequency range between 700 and 900 MHz. The precise control of frequency, power, temperature and duration of the applied field opens up new vistas for experiments not attainable by conventional microwave heating. W...
متن کاملPd/C Catalysis under Microwave Dielectric Heating
Microwave-assisted organic synthesis (MAOS) provides a novel and efficient means of achieving heat organic reactions. Nevertheless, the potential arcing phenomena via microwave (MW) interaction with solid metal catalysts has limited its use by organic chemists. As arcing phenomena are now better understood, new applications of Pd/C-catalyzed reactions under MW dielectric heating are now possibl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lab on a Chip
سال: 2009
ISSN: 1473-0197,1473-0189
DOI: 10.1039/b822357b